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Abstract— Performing a complex autonomous mission with
a multi-robot system requires to integrate several deliberative
approaches to perform task allocation, optimization, and exe-
cution control. Implementing such a deliberative architecture is
a complex task: it requires the developer to master the decision
algorithms themselves (e.g., automated planning models), to
have a good knowledge of the involved robotic platforms, and to
think about how these elements will be assembled as a system
architecture. We propose a framework to help designing such
deliberative architectures. The framework relies on the concept
of a hierarchical structure of actors, each actor managing
goals with specific planning or optimization approaches, and
delegating sub-goals to other actors.

I. INTRODUCTION

The use of autonomous robots (being independent robots
or a multi-robot system — MRS) into real-life applications
raises the challenge of designing complex deliberative ca-
pacities that may cope with different missions, the evolution
of the environment, and long-term decision making. Ap-
plications like Mars exploration [1], search-and-rescue [2],
naval defense [3], or service/assistance robotics [4], show
that such deliberative skills must manage several mission
specifications with several objectives and tasks (e.g., search,
observe, report).

Hierarchical approaches have been largely used to manage
such complex missions. Decomposing tasks or goals through
hierarchical reasoning is indeed suited to model missions
operational description. Examples of these approaches use
Hierarchical Task Network (HTN) planning [5], [6], HTN
planning combined with motion planning [7], [8], [9] or
the use of specific procedures within a classical search
approach [10]. Other works combine task or role allocation
at the MRS level with some local planning algorithms [11],
[12], [13]. More reactive approaches for decision-making
also use some hierarchical decomposition of tasks or behav-
iors. For instance, Behavior Trees implement the autonomous
behavior of a system in [14], [15].

However, using one of these approaches in a different
context or mission may lead to rethink the whole deliberative
architecture. In this paper, we propose an architectural
framework for hierarchical reasoning that helps to design
and manage the evolution and customization of the deliber-
ative reasoning of an autonomous (mono- or multi-) robotic
system. Actors [16], the main elements of this architecture,
are reasoning components that manage planning and acting
of specific tasks within a hierarchical goal decomposition
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scheme. The architecture thus integrates consistently reactive
behaviors and more deliberative processes within the same
decision-making architecture.

The state-of-the-art related to hierarchical reasoning and
architectures is first discussed in Section [l Section [ then
presents the architecture designed for a MRS performing
a protection mission: this application introduces the main
concepts of the proposed framework. Section details
these concepts and their implementation. Finally, Section
highlights the interest of this original framework through an
estimation of the effort to develop 3 robotic use-cases: 2
mono-robot systems, plus the aforementioned MRS protec-
tion mission.

II. RELATED WORKS

Hierarchical decision-making that focuses on integrating
several planning processes are often limited to the
integration of two processes, one for high-level abstract
decision-making, and the other for motion or trajectory
planning. A planner based on the Planning Domain
Definition Language (PDDL) with pre-computed trajectory
patterns as basic actions is used in [10] to solve search-
and-rescue missions. Partially-Observable Markov Decision
Process (POMDP) policies for each individual task are
called by a classical planner for high-level decision-making
and task allocation in [17]. Other approaches explicitly use
HTNs as decomposition models, either by integrating a
specific planner to select leaf tasks of the HTN, mainly for
motion planning [7], [8], [9], or combining HTN planning
with other approaches, like Partial-Order Planning [18].
While these works may give some hints for the integration
of several planning processes using several abstract models,
they do not really provide a framework or methodology to
integrate more diverse planning processes, and do not allow
to integrate acting and reactive processes.

T-REX [19] is an architectural concept where each reactor
manages one part of the mission by planning the corre-
sponding system activities and controlling their execution.
Reactors form a hierarchical architecture, where higher-level
reactors reason on the long-term for the global mission, while
lower-level reactors reason on the short-term for specialized
systems. Its applications to MRS are limited to architectures
where: (1) each robot has its own T-REX deliberative archi-
tecture and only exchange data with its teammates [20], [21],
[22], or (2) one robot is the leader, owning the complete
deliberative architecture, and sending low-level commands



to a follower robot [23]. Furthermore, T-REX reactors are
restricted to use timeline models for planning and acting.

A similar work proposed in the Mlaras architecture [24]
is structured into layers, each layer corresponding to one
deliberation. It hence refines the global planning problem
into more concrete actions from top to bottom. The design
of the architecture is essentially declarative, by relying
intensively on PDDL to define the blocks of the system. But
we claim that we also need more operational means to define
some behaviors that cannot rely on pure automated planning.
Also, their architecture contains only one deliberation per
layer, which prevents dispatching goals or tasks in parallel
to several sub-systems, a mandatory feature in multi-robot
systems.

ROSPIan [25] allows to integrate planners based on the
temporal PDDL into a ROS architecture. Its use in a two-tier
MRS has been evaluated in [26]. The architecture contains
only a goal allocation node at mission level and a temporal
planner node at vehicles level, and no real guideline to
design MRS deliberative architecture is given. The MoBaR
system [27] is a three-tier architecture that combines a
PDDL planner, the PLEXIL executive, and GenoM or ROS
to build autonomous control architectures, but it is limited
to mono-robot systems.

In conclusion, none of these works offers a real framework
helping the design of hierarchical deliberative architectures
that can moreover be used both for mono-robot systems and
to decentralize the deliberation for a MRS. In this paper,
our objective is to provide such a framework. Our approach
combines the concept of the reasoning components actor
(introduced in [16] and used for instance in [28]) with
the concept of goal lifecycles [29] to supplement planning
capabilities with acting capabilities. Controlling the execu-
tion, decomposing planned tasks into executable operations,
and reacting to failures and disturbing events remain indeed
critical to close the decision loop.

III. APPLICATION TO A MULTI-ROBOT
PROTECTION MISSION

Let’s introduce the main concepts of the deliberative archi-
tecture framework on a protection mission to be performed
by a MRS. A team of ground and aerial robots have to
protect an area: some robots placed at sentry positions such
as buildings and crossroads detect intruders while others
perform patrols surrounding the area. An example with three
sentries and two patrols is given in Fig. [T} In this mission,
when an intruder is detected, an identification task must be
performed by some robots to identify the possible threat.
Moreover, given the current situation assessment and the
possible detected or identified threat, the operator can ask
for the exploration of a specific area.

The MRS deliberative architecture for a team of Un-
manned Ground Vehicles (UGVs) and Unmanned Aerial Ve-
hicles (UAVs) is depicted in Fig. 2] Its components are either
actors (rounded rectangles) or observers (sharp rectangles
with italic labels). Deliberative functions are structured as a

Fig. 1: Specification of the Protection goal: the MRS must
be allocated three sentry positions (depicted with yellow
triangles) and two patrolling trajectories (in green and blue).

hierarchy of actors: each actor manages one kind of goal
and delegates the management of sub-goals to child actors.
For their part, observers analyze robot state and sensors data
to generate adequate events.

The root actor, namely the Mission Control System (MCS),
orchestrates the realization of the mission in interaction
with human operators through a dedicated user interface.
Decision-making in the MCS is described by simple rules
that link the activation of sub-goals to either operator inputs
or new detected events. Execution of these sub-goals are then
delegated to the Protection, Exploration or Identification ac-
tors. Events triggering the execution of sub-goals in the MCS
actor are generated by the EnvDB observer that manages
information about the environment.

The Protection actor manages the execution of a protection
goal by first expanding this goal, i.e. decomposing its
specification (as illustrated in Fig.[T) into sub-goals allocated
to each robot. To do so, it needs information about available
robots (including their navigation skills and sensors) and
the environment model (navigable paths, associated costs),
which comes from the corresponding observers. In practice,
this decomposition is computed by solving a Mixed-Integer
Linear Programming (MILP) problem that minimizes the
time to reach the sentry and patrol locations. The structure
of the resulting decomposition is in this case a Partial-
Order Schedule that ensures some precedence constraints
between sub-goals (e.g., sentries must start before patrols).
Once decomposed, the goal is dispatched by delegating
the management of sub-goals to child actors. These actors,
here directly embedded on robots, manage the execution of
goals corresponding to reaching waypoints, patrolling, and
performing a sentry.

Focusing on UGVs architecture, the Patrol actor manages
a patrol goal by expanding it into a transit to reach the patrol
initial position, then the patrol itself on the given trajectory,
forward and backward, until a stop condition (a defined time
or battery level). Patrol and Transit actors basically use some
path planning on graphs to compute paths, using the robot
current navigation graph as well as its state (position, battery)
available in the StateObs observer.
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Fig. 2: MRS deliberative architecture for the protection mission. The four UGV architectures are similar, as well as the two
UAV architectures, and they have then been grouped to make the figure easier to read. Plain arcs represent goal decomposition
requests. Dotted arcs represent data sent from observers to actors.

Lowest-level actors that execute elementary goals through
a dedicated interface with robots functional layers are called
controllers. For instance, they execute path following or
sentries by calling services or publishing to topics in a ROS-
based robot architecture or using a skill-based interface [30].

Actors report on the execution of a goal to their parent
actor in the hierarchy, so that the latter can monitor the
progress of the goal being delegated. These reports can in-
clude failures, e.g., if moving on a path becomes impossible
due to an environment change or a robot issue. The upper
actor can then decide whether to resolve this goal, e.g., by
computing a new path, or report again the failure to its parent
actor that will for instance allocate the goal to another robot.

IV. A HIERARCHICAL DELIBERATIVE
ARCHITECTURE FRAMEWORK

This section details the developed framework to design
deliberative architectures such as the one presented for the
MRS protection mission. This original framework is based
on the concepts of actors hierarchically structured to support
goal decomposition, and of observers managing data flow in
the deliberative architecture. This framework comes with a
practical implementation using the ROS2 middleware.

A. Goal Management in Actors

The proposed architectural framework relies on a hierarchy
of actors that leads to a hierarchical goal decomposition.
Each actor manages one type of goal and is implemented by
the goal lifecycle presented in Fig. [3| This lifecyle has been
originally proposed in [29], where a unique agent, the goal
reasoner (GR), manages goals for a unique robotic system.
While top goals are formulated by a user, sub-goals are
managed internally, the GR inserting these sub-goals in its
own queue of goals. We have leveraged this goal lifecycle
concept into a hierarchical multi-actor architecture. In the
description of lifecycle steps given below, A refers to the
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Fig. 3: Goal Lifecycle, adapted from [29]. Plain transitions
are requests coming from a parent actor. Dashed transitions
are internal to the actor. Transitions highlighted in pink must
be implemented by the actor developer, whereas transitions
with italic labels are only triggered in the developer’s code.

current actor that implements this lifecycle, and P refers to
its parent actor that delegates to A the management of goals.

1) Formulation: P delegates a new goal to A, through the
FORMULATE request, and this goal is added to A’s memory
as a formulated goal.

2) Selection: P requests A to SELECT a formulated goal.
It is then up to A to accept or reject this request. This is
typically implemented as checking that there is no mutual
exclusion with a goal already selected, or that the goal
is valid in the current context (e.g., not out of bounds).
For instance, the Protection actor of Fig. [2] verifies that
enough robots are available to perform all sub-goals, while
the Transit actors check that the target point is reachable in



the robot navigation graph.

3) Expansion: P requests A to compute some (generally
one, possibly multiple) decomposition of a selected goal into
sub-goals. To do so, A’s developer implements the EXPAND
function with the method of their choice. In the protection
mission, such functions are implemented using MILP, graph
theory, or hand-written parametric plans. Whatever the de-
composition succeeds or fails, the result is notified to P.

4) Commitment: Given the possible decomposition re-
turned when expanding the goal, P confirms (or chooses in
case of several plans) the commitment of the goal. A must
then be ready for execution, by checking the validity of the
plan or asking child actors to commit sub-goals.

5) Dispatching: P requests A to actually start the goal
execution. In most of the cases, it consists in A formulating
its sub-goals to child actors, then going through their life-
cycle until dispatching them, according to the plan structure
(e.g., managing sub-goals precedence relation).

6) Monitoring: The MONITOR transition is periodically
triggered by actor A while the goal is dispatched. It checks
the execution status of sub-goals and reacts to reports. When
the current goal is completed (i.e., all the sub-goals suc-
ceeded), the goal is finished: the FINTISHED state is reported
to P, and the goal is removed from A’s memory. If any
mistake or failure is reported from the sub-goal management
(e.g., a sub-goal that cannot be selected or expanded), then
the Evaluate transition is triggered.

7) Evaluation: The Evaluate transition is an internal
transition that is triggered by the developer of A when
events or reports jeopardize the goal execution. In the Eval-
uate function, the developer determines which transition to
perform given the current information among the possible
resolvers that can put back the goal upper in its lifecycle.
These resolvers have the same behavior: (1) they try to
put the goal back in their corresponding step, calling the
corresponding transition as if it was requested by P; (2) in
case of success, they trig the successive transitions to put the
goal in the dispatched state again; (3) in case of failure, the
resolver just above is applied, following the same behavior.
For instance, resolving a goal with Replan will call again the
expansion function, computing a new decomposition for this
goal. If a decomposition is found, the goal is first committed,
then dispatched. If no decomposition is found, the goal is
deferred: it is selected, then expanded, down to dispatch. If
a transition fails again, the goal is reformed. Reforming a
goal is a specific resolver, as it does not try to select the
goal again, but reports to P that the goal has been reformed.
It is then up to P to decide if the goal must be dropped, or
if it must be tried again.

The behavior of resolvers is automatically managed in
the framework implementation: the developer has just to
call the desired resolver in its Evaluate implementation, and
lifecycle management and reports toward P are automatically
performed according to the success or failure of transitions.

8) Dropping: The DROP transition is tailored by actor
A’s developer to remove the goal from memory and to drop
sub-goals that have already been delegated to other actors,

when it is required by actor P.

9) Processing events: Actors can subscribe to events
(described later). The arrival of new events is managed in
the PROCESS transition. According to current situation and
state of goals, A’s developer decides to call the Evaluate
transition of some goals to determine how to react to events.

In the protection mission (Fig.[2), when receiving an event
about the detection of a new intruder, MCS replans the cur-
rent mission to include an identification sub-goal in addition
to the existing sub-goals (protection and/or exploration).

B. Actor Patterns

In most cases, a full goal lifecycle is not necessary. We
defined then two specific lifecycle patterns in the framework:
controllers, and plan/replan behaviors based on Partial-Order
Schedules (POS).

Controllers are the actors at the lowest level of the
deliberative architecture. They cannot create sub-goals and
delegate them to other actors, but instead manage one goal
execution with a direct interface to the robot functional
layer. Therefore, in their lifecycle shown in Fig. [a] the
EXPAND and COMMIT transitions do nothing specific, as
no decomposition must be computed. Also, the controller
cannot process external events but only reacts to execution
reports from the functional layer, handled in the MONITOR
transition. Only reactions are then to Finish the goal in case
of success, or to Reform it in case of failure.
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Fig. 4: Specific lifecycles of some actor patterns (same
legend as in Fig. 3).

POS actors manage goal decomposition where sub-goals
have precedence relations. Their corresponding lifecycle is
depicted in Fig. due to the known structure of the plan,
the COMMIT, DISPATCH, MONITOR and DROP ftransitions
are already implemented: a sub-goal can be executed only
once all its predecessors have finished (i.e., successfully).
When an error is reported on a sub-goal (which has then been
reformed), the evaluation may lead to either consider the sub-
goal is finished and continue the plan execution, replan to
find a new plan, or reform the goal itself and report to the
parent actor.

Timed POS actors extend POS actors by considering that
sub-goals have an optional dispatch time. They behave as
POS actors regarding the precedence checks of sub-goals,
but instead of dispatching immediately, the actors set up a



timer that delays the execution of sub-goals. These actors
are useful for plans that contain time-constrained actions.
They can also handle hybrid plans with timed and not timed
sub-goals.

C. Data Management

The hierarchy of actors manages goal decomposition,
including planning (in the expansion step) and execution
control (when dispatching and then monitoring sub-goals).
Goals and their current state in their respective lifecycles are
the only data exchanged between actors in this hierarchy.

However, actors have to manage other information to
reason and to take decisions. Components that provide data
on-demand to the actors are called observers.

In the protection mission architecture (Fig. [2), StateObs
observers at the robot level manage data related to the robot
internal state: current position, battery level, current map,
state of sensors, etc. These data are gathered through a spe-
cific interface, typically by subscribing to ROS topics. Ob-
servers can for instance provide data that actually aggregate
information coming from several ROS topics. From the point
of view of the design process, having these data centralized
into observers has the advantage to make actors independent
on how data must be gathered: actors are not bound to
specific ROS topics but instead use the data management
interface provided by the framework. This makes the actors
easier to maintain and reusable between architectures, fol-
lowing the separation of concerns paradigm [31].

For their part, EnvDB and RobotDB observers manage
static data that describe the environment in which the mission
takes place (e.g., known and unknown areas, reachable
zones) and the set of available robots along with their
features (e.g., equipped with sensors needed for sentries,
nominal speed or battery consumption rate). These informa-
tion are used by the multi-robot actors that are implementing
the task allocation algorithms.

D. Event Management

In some situations, actors do not want to demand the data
values, but instead want to be informed when these values
change or satisfy some given properties. In our framework,
this is formalized using the concept of events. Events are
specified using the Metric Temporal Logic (MTL) evaluated
on data values [32]. This logic allows to have a clear
specification of what these events represent, and to use
standard tools for their runtime evaluation [33].

Events are then defined using MTL within observers,
based on the data they manage. When actors subscribe to
events, they are notified each time the event MTL formula be-
comes true, through the actors’ PROCESS transition. It is then
up to the actor’s developer to decide how to react to these
events. Some default behaviors are already implemented in
the framework and can be used by the developer, such as
systematically replanning the dispatched goals.

In the protection mission architecture (Fig. [2), the in-
truder detection event is defined using the MTL formula
Hs(intruder # (), specifying that the value of data

intruder has not been empty for the last 5 time steps (using
the historically operator).

E. Framework Implementation

The framework has been implemented in Python lan-
guage using ROS2 middleware. Each component, actor or
observer, is then a ROS2 node. Communications between
these components (i.e., goal requests, getting data, events)
are available through a high-level interface: the component
developer has never to manipulate ROS primitives to make
these connections. The use of bare ROS functions is only
needed when developing a controller that must interface with
the functional layer through ROS, or when observers need
to gather data values in the functional layer from ROS.

Framework implementation only relies on ROS2 topics,
with a fine tuning of the underlying Data Distribution Service
(DDS) quality of service: it allows to setup the level of
reliability depending on the requirements of each connec-
tion, and makes use of the liveliness property to detect
(dis)connections between actors. The framework library is
available at:

http://ocara—architecture.gitlab.io/

V. DESIGN OF DELIBERATIVE ARCHITECTURES

The framework has been applied to 4 use-cases: (1) the
travel standard problem in HTN planning used as a tutorial in
the library documentation, (2) the MRS protection mission of
Section (3) an Earth Observing Satellite (EOS) mission
controller that manages the dynamic acquisition of the best
targets to photograph, and (4) an Autonomous Underwater
Vehicle (AUV) surveying an area.

Use-cases (3) and (4) are mono-robot architectures in
environments where a high level of autonomy is required,
while use-case (2) is a MRS with the need to decentralize
the decision between multi-robot components and individual
tasks. In this latter case, field experiments with 4 UGVs and
2 UAVs implemented the architecture illustrated in Fig. [2]
During these experiments, 44 ROS2 nodes (excluding robots
functional layers nodes) were deployed and distributed over
7 computing units.

We assess the relevance of the proposed framework by
estimating the development effort of its library as well as
of use-cases instances. To do so, we counted the number
of Lines of Code (LoC) of ROS packages and estimated
the effort in person-month (p.m) using the COCOMO ap-
proach [34]. Results are reported in Tables [[] and

Package LoC | Estimated effort (p.m)

oara 3,404 15.66*
oara_interfaces 162 0.35%
oara-common_interfaces 432 0.99%
Total 3,998 17.01

TABLE I: LoC and estimated development effort of frame-
work packages. The oara package contains the complete
library to develop actors and observers, while other packages
contain ROS message and service types.


http://oara-architecture.gitlab.io/

Use-case | Components | LoC | Estimated effort (p.m) |

Travel 5 170 0.377
MRS 20 | 1,853 4.597
EOS 11 | 1,235 2.99°
AUV 5 307 0.69"

TABLE II: Number of actor and observer components, LoC
and estimated development effort of use-cases.

Even if the estimated effort is not to be taken as an
absolute indication, it allows to evaluate the benefit of
using the proposed framework. The development of each
use-case required little effort regarding to quite complex
architectures. Given the estimated effort of the framework
itself, we can guess that the effort of developing each use-
case architecture without any framework would have been
several times higher.

VI. CONCLUSION

This paper describes a framework to design deliberative
architectures for robotic systems. This framework relies
on the concept of a hierarchical structure of actors. Each
actor manages one type of goal, through a formal goal
lifecycle, in which the actor developer can implement specific
steps. Sub-goals are then delegated to child actors in the
hierarchical architecture. In addition to actors, the framework
uses observers to store data and emit events.

This framework has been applied to several use-cases, and
the identified advantages are twofold: first, the framework
concepts help to design effective deliberative architectures,
and second, it reduces the development effort, as shown by
measuring the lines of codes of each application.
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